

Educational Session 1	10.30 - 11.30
Short Break	11.30 - 11.40
Educational Session 2	11.40 - 13.00
Lunch	13.00 - 14.00
Opening & Session 1	14.00 - 15.40

« High field » NMR Spectroscopy

Liquid (high resolution) state

« Imaging » MRI

« Low-field » TD NMR

EPR Spectroscopy/Imaging

1000 750 500 250 0

ppm

Back to basics

NMR relaxation :

NMR relaxation : return to equilibrium

NMR relaxation : return to equilibrium

$$\frac{dM_{x,y}^{t}}{dt} = -R_2 M_{x,y}^{t} \qquad \qquad M_{x,y}^{t} = M_{x,y}^{0} e^{-R_2 t} \qquad \qquad R_2 = ($$

ordered

(T₂)⁻¹ disordered

coherent

loss of order loss of coherence

incoherent

T₂ relaxation **Entropic process** Mutual exchange of energy (spin-spin) Can be caused by chemical exchange as well!

Importance of T₁ and T₂ for spectroscopy

Importance of T_1 and T_2 for spectroscopy

Importance of T_1 and T_2 for spectroscopy

The NMR signal attenuates exponentially with time

$$s(t) \sim M_A \cos \omega_A t(e^{-t/T_2})$$

Small molecules : $T_2 \,^\sim 0.2$ to 2s

Beyond a time equal to 3 times T_2 88% of the signal has dissipated and mostly noise is measured

The value of T_2 thus determines the time period during which the signal should be monitored

As the value of T₂ shortens, the resonance line will broaden

Importance of T_1 and T_2 for spectroscopy

As the molecular weight increases, the lines become much broader, affecting resolution and information contents

Importance of T_1 and T_2 for spectroscopy

Spin echo sequence

Polystyrene with Mr 50.000 and camphor, $\rm T_2~PS$ ~ 5ms << $\rm T_2$ camphor ~0.5s

Collection of ¹H and ¹³C signals

Structure Analysis & Elucidation

Scalar coupling interaction between chemically nearby ${}^1\!Hs$

¹H-¹H COSY : Correlating neighbouring hydrogens

- Individual ¹H's must be within three chemical bonds
- Only ¹H's from the same unit are correlated due to the glycosidic links

Scalar coupling interaction between chemically nearby ¹Hs

¹H-¹H COSY : Correlating neighbouring hydrogens

- Individual ¹H's must be within three chemical bonds - The glycosidic links interrupt the correlation sequence
 - \rightarrow Only ¹H's from the same unit are correlated due to the glycosidic links

Structure Analysis & Elucidation

¹H-¹H COSY : Correlating neighbouring hydrogens

Scalar coupling interaction between chemically nearby ¹Hs

- Individual ¹H's must be within three chemical bonds - The glycosidic links interrupt the correlation sequence
 - \rightarrow Only ¹H's from the same unit are correlated due to the glycosidic links

Scalar coupling interaction between directly bonded ¹H and ¹³C

¹H-¹³C HSQC : Single Bond Correlation

- Establishing C-H bonding pairs in the molecule

- No quaternary carbons
- $-CH_3$, CH_2 , CH can be independently established (meHSQC)

Scalar coupling interaction between nearby $^1\mathrm{Hs}$ and $^{13}\mathrm{Cs}$

¹H-¹³C HMBC : Multiple Bond Correlation

- Quaternary carbons identified
- Allows the immediate vicinity of the carbon skeleton to be inferred
- Connections across glycosidic linkages established

Structure Analysis & Elucidation

The NOESY spectrum as the basis for solution structure determination

The molecular structure, defined at the level of a dense network of inter hydrogen distances, is thus encoded in the 2D NOESY spectrum of a molecule

NMR based structure determination consists in extracting the dense network of distances from the NOESY spectrum and computing the corresponding 3D structure